The Levi-Civita tensor

October 25, 2012

In 3-dimensions, we define the Levi-Civita tensor, $\varepsilon_{i j k}$, to be totally antisymmetric, so we get a minus sign under interchange of any pair of indices. We work throughout in Cartesian coordinate. This means that most of the 27 components are zero, since, for example,

$$
\varepsilon_{212}=-\varepsilon_{212}
$$

if we imagine interchanging the two 2 s. This means that the only nonzero components are the ones for which i, j and k all take different value. There are only six of these, and all of their values are determined once we choose any one of them. Define

$$
\varepsilon_{123} \equiv 1
$$

Then by antisymmetry it follows that

$$
\begin{aligned}
& \varepsilon_{123}=\varepsilon_{231}=\varepsilon_{312}=+1 \\
& \varepsilon_{132}=\varepsilon_{213}=\varepsilon_{321}=-1
\end{aligned}
$$

All other components are zero.
Using $\varepsilon_{i j k}$ we can write index expressions for the cross product and curl. The $i^{t h}$ component of the cross product is given by

$$
[\mathbf{u} \times \mathbf{v}]_{i}=\varepsilon_{i j k} u_{j} v_{k}
$$

as we check by simply writing out the sums for each value of i,

$$
\begin{aligned}
{[\mathbf{u} \times \mathbf{v}]_{1} } & =\varepsilon_{1 j k} u_{j} v_{k} \\
& =\varepsilon_{123} u_{2} v_{3}+\varepsilon_{132} u_{3} v_{2}+(\text { all other terms are zero }) \\
& =u_{2} v_{3}-u_{3} v_{2} \\
{[\mathbf{u} \times \mathbf{v}]_{2} } & =\varepsilon_{2 j k} u_{j} v_{k} \\
& =\varepsilon_{231} u_{3} v_{1}+\varepsilon_{213} u_{1} v_{3} \\
& =u_{3} v_{1}-u_{1} v_{3} \\
{[\mathbf{u} \times \mathbf{v}]_{3} } & =\varepsilon_{3 j k} u_{j} v_{k} \\
& =u_{1} v_{2}-u_{2} v_{1}
\end{aligned}
$$

We get the curl simply by replacing u_{i} by $\nabla_{i}=\frac{\partial}{\partial x_{i}}$,

$$
[\nabla \times \mathbf{v}]_{i}=\varepsilon_{i j k} \nabla_{j} v_{k}
$$

If we sum these expressions with basis vectors \mathbf{e}_{i}, where $\mathbf{e}_{1}=\mathbf{i}, \mathbf{e}_{2}=\mathbf{j}, \mathbf{e}_{3}=\mathbf{k}$, we may write these as vectors:

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =[\mathbf{u} \times \mathbf{v}]_{i} \mathbf{e}_{i} \\
& =\varepsilon_{i j k} u_{j} v_{k} \mathbf{e}_{i} \\
\nabla \times \mathbf{v} & =\varepsilon_{i j k} \mathbf{e}_{i} \nabla_{j} v_{k}
\end{aligned}
$$

There are useful identities involving pairs of Levi-Civita tensors. The most general is

$$
\varepsilon_{i j k} \varepsilon_{l m n}=\delta_{i l} \delta_{j m} \delta_{k n}+\delta_{i m} \delta_{j n} \delta_{k l}+\delta_{i n} \delta_{j l} \delta_{k m}-\delta_{i l} \delta_{j n} \delta_{k m}-\delta_{i n} \delta_{j m} \delta_{k l}-\delta_{i m} \delta_{j l} \delta_{k n}
$$

To check this, first notice that the right side is antisymmetric in i, j, k and antisymmetric in l, m, n. For example, if we interchange i and j, we get

$$
\varepsilon_{j i k} \varepsilon_{l m n}=\delta_{j l} \delta_{i m} \delta_{k n}+\delta_{j m} \delta_{i n} \delta_{k l}+\delta_{j n} \delta_{i l} \delta_{k m}-\delta_{j l} \delta_{i n} \delta_{k m}-\delta_{j n} \delta_{i m} \delta_{k l}-\delta_{j m} \delta_{i l} \delta_{k n}
$$

Now interchange the first pair of Kronecker deltas in each term, to get i, j, k in the original order, then rearrange terms, then pull out an overall sign,

$$
\begin{aligned}
\varepsilon_{j i k} \varepsilon_{l m n} & =\delta_{i m} \delta_{j l} \delta_{k n}+\delta_{i n} \delta_{j m} \delta_{k l}+\delta_{i l} \delta_{j n} \delta_{k m}-\delta_{i n} \delta_{j l} \delta_{k m}-\delta_{i m} \delta_{j n} \delta_{k l}-\delta_{i l} \delta_{j m} \delta_{k n} \\
& =-\delta_{i l} \delta_{j m} \delta_{k n}-\delta_{i m} \delta_{j n} \delta_{k l}-\delta_{i n} \delta_{j l} \delta_{k m}+\delta_{i l} \delta_{j n} \delta_{k m}+\delta_{i n} \delta_{j m} \delta_{k l}+\delta_{i m} \delta_{j l} \delta_{k n} \\
& =-\left(\delta_{i l} \delta_{j m} \delta_{k n}+\delta_{i m} \delta_{j n} \delta_{k l}+\delta_{i n} \delta_{j l} \delta_{k m}-\delta_{i l} \delta_{j n} \delta_{k m}-\delta_{i n} \delta_{j m} \delta_{k l}-\delta_{i m} \delta_{j l} \delta_{k n}\right) \\
& =-\varepsilon_{i j k} \varepsilon_{l m n}
\end{aligned}
$$

Total antisymmetry means that if we know one component, the others are all determined uniquely. Therefore, set $i=l=1, j=m=2, k=n=3$, to see that

$$
\begin{aligned}
\varepsilon_{123} \varepsilon_{123} & =\delta_{11} \delta_{22} \delta_{33}+\delta_{12} \delta_{23} \delta_{31}+\delta_{13} \delta_{21} \delta_{32}-\delta_{11} \delta_{23} \delta_{32}-\delta_{13} \delta_{22} \delta_{31}-\delta_{12} \delta_{21} \delta_{33} \\
& =\delta_{11} \delta_{22} \delta_{33} \\
& =1
\end{aligned}
$$

Check one more case. Let $i=1, j=2, k=3$ again, but take $l=3, m=2, n=1$. Then we have

$$
\begin{aligned}
\varepsilon_{123} \varepsilon_{321} & =\delta_{13} \delta_{22} \delta_{31}+\delta_{12} \delta_{21} \delta_{33}+\delta_{11} \delta_{23} \delta_{32}-\delta_{13} \delta_{21} \delta_{32}-\delta_{11} \delta_{22} \delta_{33}-\delta_{12} \delta_{23} \delta_{31} \\
& =-\delta_{11} \delta_{22} \delta_{33} \\
& =-1
\end{aligned}
$$

as expected.
We get a second identity by setting $n=k$ and summing,

$$
\begin{aligned}
\varepsilon_{i j k} \varepsilon_{l m k} & =\delta_{i l} \delta_{j m} \delta_{k k}+\delta_{i m} \delta_{j k} \delta_{k l}+\delta_{i k} \delta_{j l} \delta_{k m}-\delta_{i l} \delta_{j k} \delta_{k m}-\delta_{i k} \delta_{j m} \delta_{k l}-\delta_{i m} \delta_{j l} \delta_{k k} \\
& =3 \delta_{i l} \delta_{j m}+\delta_{i m} \delta_{j l}+\delta_{i m} \delta_{j l}-\delta_{i l} \delta_{j m}-\delta_{i l} \delta_{j m}-3 \delta_{i m} \delta_{j l} \\
& =(3-1-1) \delta_{i l} \delta_{j m}-(3-1-1) \delta_{i m} \delta_{j l} \\
& =\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}
\end{aligned}
$$

so we have a much simpler, and very useful, relation

$$
\varepsilon_{i j k} \varepsilon_{l m k}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}
$$

A second sum gives another identity. Setting $m=j$ and summing again,

$$
\begin{aligned}
\varepsilon_{i j k} \varepsilon_{l j k} & =\delta_{i l} \delta_{m m}-\delta_{i m} \delta_{m l} \\
& =3 \delta_{i l}-\delta_{i l} \\
& =2 \delta_{i l}
\end{aligned}
$$

Setting the last two indices equal and summing provides a check on our normalization,

$$
\varepsilon_{i j k} \varepsilon_{i j k}=2 \delta_{i i}=6
$$

This is correct, since there are only six nonzero components and we are summing their squares.

Collecting these results,

$$
\begin{aligned}
\varepsilon_{i j k} \varepsilon_{l m n} & =\delta_{i l} \delta_{j m} \delta_{k n}+\delta_{i m} \delta_{j n} \delta_{k l}+\delta_{i n} \delta_{j l} \delta_{k m}-\delta_{i l} \delta_{j n} \delta_{k m}-\delta_{i n} \delta_{j m} \delta_{k l}-\delta_{i m} \delta_{j l} \delta_{k n} \\
\varepsilon_{i j k} \varepsilon_{l m k} & =\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l} \\
\varepsilon_{i j k} \varepsilon_{l j k} & =2 \delta_{i l} \\
\varepsilon_{i j k} \varepsilon_{i j k} & =6
\end{aligned}
$$

Now we use these properties to prove some vector identities. First, consider the triple product,

$$
\begin{aligned}
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) & =u_{i}[\mathbf{v} \times \mathbf{w}]_{i} \\
& =u_{i} \varepsilon_{i j k} v_{j} w_{k} \\
& =\varepsilon_{i j k} u_{i} v_{j} w_{k}
\end{aligned}
$$

Because $\varepsilon_{i j k}=\varepsilon_{k i j}=\varepsilon_{j k i}$, we may write this in two other ways,

$$
\begin{aligned}
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) & =\varepsilon_{i j k} u_{i} v_{j} w_{k} \\
& =\varepsilon_{k i j} u_{i} v_{j} w_{k} \\
& =w_{k} \varepsilon_{k i j} u_{i} v_{j} \\
& =w_{i}[\mathbf{u} \times \mathbf{v}]_{i} \\
& =\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) & =\varepsilon_{i j k} u_{i} v_{j} w_{k} \\
& =\varepsilon_{j k i} u_{i} v_{j} w_{k} \\
& =v_{j}[\mathbf{w} \times \mathbf{u}]_{j} \\
& =\mathbf{v} \cdot(\mathbf{w} \times \mathbf{u})
\end{aligned}
$$

so that we have established

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})=\mathbf{v} \cdot(\mathbf{w} \times \mathbf{u})
$$

and we get the negative permutations by interchanging the order of the vectors in the cross products.
Next, consider a double cross product:

$$
\begin{aligned}
{[\mathbf{u} \times(\mathbf{v} \times \mathbf{w})]_{i} } & =\varepsilon_{i j k} u_{j}[\mathbf{v} \times \mathbf{w}]_{k} \\
& =\varepsilon_{i j k} u_{j} \varepsilon_{k l m} v_{l} w_{m} \\
& =\varepsilon_{i j k} \varepsilon_{k l m} u_{j} v_{l} w_{m} \\
& =\varepsilon_{i j k} \varepsilon_{l m k} u_{j} v_{l} w_{m} \\
& =\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) u_{j} v_{l} w_{m} \\
& =\delta_{i l} \delta_{j m} u_{j} v_{l} w_{m}-\delta_{i m} \delta_{j l} u_{j} v_{l} w_{m} \\
& =\left(\delta_{i l} v_{l}\right)\left(\delta_{j m} u_{j} w_{m}\right)-\left(\delta_{j l} u_{j} v_{l}\right)\left(\delta_{i m} w_{m}\right) \\
& =v_{i}\left(u_{m} w_{m}\right)-\left(u_{j} v_{j}\right) w_{i}
\end{aligned}
$$

Returning to vector notation, this is the $B A C-C A B$ rule,

$$
\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}
$$

Finally, look at the curl of a cross product,

$$
[\nabla \times(\mathbf{v} \times \mathbf{w})]_{i}=\varepsilon_{i j k} \nabla_{j}[\mathbf{v} \times \mathbf{w}]_{k}
$$

$$
\begin{aligned}
& =\varepsilon_{i j k} \nabla_{j}\left(\varepsilon_{k l m} v_{l} w_{m}\right) \\
& =\varepsilon_{i j k} \varepsilon_{k l m}\left(\left(\nabla_{j} v_{l}\right) w_{m}+v_{l} \nabla_{j} w_{m}\right) \\
& =\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right)\left(\left(\nabla_{j} v_{l}\right) w_{m}+v_{l} \nabla_{j} w_{m}\right) \\
& =\delta_{i l} \delta_{j m}\left(\left(\nabla_{j} v_{l}\right) w_{m}+v_{l} \nabla_{j} w_{m}\right)-\delta_{i m} \delta_{j l}\left(\left(\nabla_{j} v_{l}\right) w_{m}+v_{l} \nabla_{j} w_{m}\right) \\
& =\left(\nabla_{m} v_{i}\right) w_{m}+v_{i} \nabla_{m} w_{m}-\left(\nabla_{j} v_{j}\right) w_{i}-v_{j} \nabla_{j} w_{i}
\end{aligned}
$$

Restoring the vector notation, we have

$$
\nabla \times(\mathbf{v} \times \mathbf{w})=(\mathbf{w} \cdot \nabla) \mathbf{v}+(\nabla \cdot \mathbf{w}) \mathbf{v}-(\nabla \cdot \mathbf{v}) \mathbf{w}-(\mathbf{v} \cdot \nabla) \mathbf{w}
$$

If you doubt the advantages here, try to prove these identities by explicitly writing out all of the components!

