

AGENDA

- -1 Intro + forms 2 Quick asymptotics review
 - 3. Recurrence relations + Master theorem

ASYMPTOTICS

2 commonly used definitions:
1.
$$-f(n) = O(g(n))$$
 y, for $n \to \infty$,
 $f(n) = C, g(n)$, for a constant c.
 $-f(n) = \frac{D}{A}(g(n))$ y $f(n) = C, g(n)$ as $n \to \infty$
 $-f(n) = \frac{D}{A}(g(n))$ y $f(n) = C, g(n)$ so $n \to \infty$.
you can there of $O(big - O)$ as $\leq 1, D$
(big - Omga) as $\geq 1, \text{ and } O(big - Heta)$ as
 $= (an the asymptotic/limit large).$
2. Simit definition (not necessary! but sufficient)
 $\int \frac{1}{2} \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0, \text{ then } f(n) = O(g(n))$
 $\Re \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty, \text{ then } f(n) = \frac{D}{A}(g(n))$
 $\Re \lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{1}{2} \int e^{-\frac{1}{2}} e^{-\frac$

For each of the following, state the order of growth using Θ notation, e.g. $f(n) = \Theta(n)$.

tinyurl.com/manan-week1-attendance

tinyurl.com/manan-mailing-list

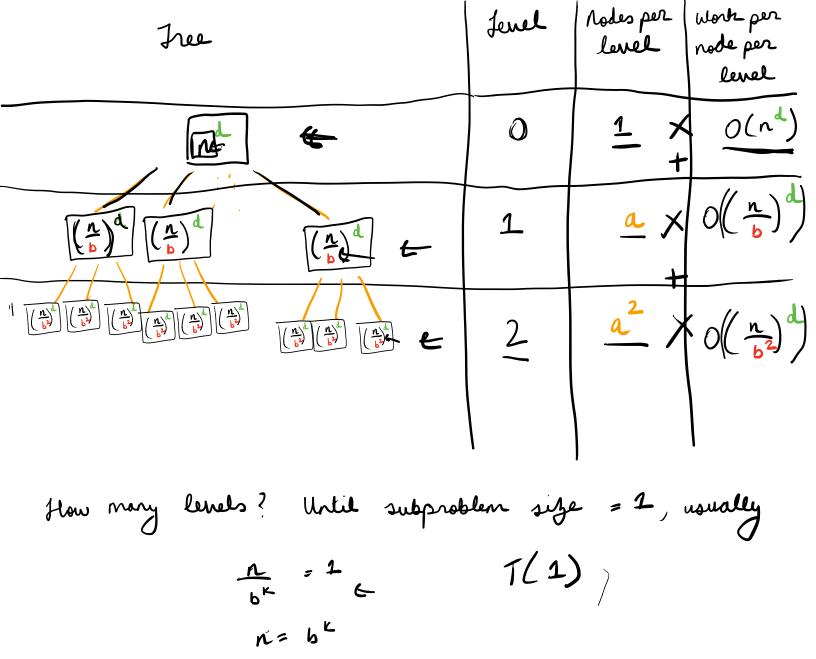
RECURRENCE RELATIONS

Divide - and - inquer problems generally follow the
following pandign:
1 split the problem up into smaller parts
2. Make a reversive calls to problems of
size n/b
3. "glue" the subproblems together to provide
solution of arguinal problem.
This formulation lends itself to the contrivial reversive
relation:

$$T(n) = a T(n/b) + O(nd)$$

 $a \in branching factor z $O(n^2)$
 $b \in factor by which subproblem size is reduced
 $d \in werk dore at each subproblem.
 $O(n^d)$$$$

$$\frac{T(n)}{b} = \frac{a}{a}T(n/b) + O(n)d = e$$



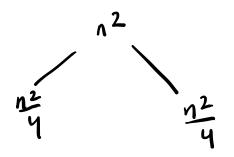
K=Lloy b n]

Jotal work : Sum of work at each level: $T(n) = O(n^{d}) \cdot (1 + (\frac{a}{b^{d}}) + (\frac{a}{b^{d}})^{2} + \dots + (\frac{a}{b^{d}})^{2})^{n})$ Key term : $\begin{bmatrix} a \\ b^{d} \end{bmatrix}$ MASTER THEOREM

$$T(n) = \underbrace{a}_{b} T(n/\underline{b}) + \underbrace{O(n-\underline{b})}_{b} \underbrace{g}_{b}$$

$$-\underbrace{a}_{b} \underbrace{c}_{b} \underbrace{a}_{b} \underbrace{c}_{b} \underbrace{c}_{b} \underbrace{d}_{b} \underbrace{d} \underbrace{$$

$$T(n) = 2 T(n/2) + 0(n^2)$$



PRACTICE

(a) (i)
$$T(n) = 3T(n/4) + 4n$$

(ii) $T(n) = 45T(n/3) + .1n^3$
log log w
 $\begin{bmatrix} 1 \\ 2^{k} \end{bmatrix}^{=}$
 $n \rightarrow n^{1/2} \rightarrow n^{1/1} \rightarrow 1$

(can't use Master theorem!)

(b) $T(n) = 2T(\sqrt{n}) + 3$, and T(2) = 3. Hint: Try repeatedly expanding the recurrence.