$$
[S T O
$$

AGENDA
-1 Intro + forms
2. Quick asymptotic review
3. Reannence relations + Master theorem

ASYMPTOTILS

2 commonly used definitions:

$\underline{f(n)} \leqslant \underset{\rightarrow}{c} g(n)$, for a constant c.

$$
\begin{aligned}
-f(n) & =\frac{\pi}{\pi}(g(n)) \text { if } f(n) \geqq c \cdot g(n) \text { as } n \rightarrow \infty \\
-f(n) & =\frac{\theta}{\pi}(g(n)) \text { if } f(n)=c \cdot g(n) \text { as } \frac{n \rightarrow \infty}{\lambda} .
\end{aligned}
$$

you son there of $O($ big -0$)$ as \leq, Ω (be y-onega) as \geq, and θ (big. Theta) as $=$ (on the asymplotic/ limit level).
2. Limit definition (not necessary! but auffient)

$$
\left\{\begin{aligned}
& \text { If } \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0, \text { then } f(n)=0(g(n)) \\
& \text { If } \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty \text {, then } f(n)=\Omega(g(n)) \\
&\left.\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}\right\}=\leq \text { for some } c>0 \text {, then } \\
& f(n)=\theta(g(n)) . \\
& n^{2}+n
\end{aligned} \begin{array}{rl}
n^{2} &
\end{array}\right.
$$

Practice:

$$
n^{100}+1.01^{n}
$$

For each of the following, state the order of growth using $\underline{\Theta}$ notation, e.g. $f(n)=\Theta(n)$.
(i) $f(n)=50 \quad \Theta(1)$
(ii) $f(n)=n^{2}-2 n+3 \quad \theta\left(\mathbf{n}^{2}\right)$
(iii) $f(n)=n+\cdots+3+2+1$
(iv) $f(n)=$ $=n^{100}+1.01^{n}$
(v) $f(n)=n^{1.1}+n \log n$
(vi)

$$
\begin{aligned}
& n^{10000}<1.00001^{n} \text { desm0s } \\
& f(n)=\Omega\left(\frac{\left.n^{100}\right)}{\downarrow}\right) \\
& f(n)=\Omega\left(\frac{1.01^{n}}{\eta}\right) " \text { tighter" }
\end{aligned}
$$

$$
\{\log <\text { polynomial }
$$

FORMS

tinyurl.com/manan-week1-attendance

tinyurl.com/manan-mailing-list

RECURRENCE RELATIONS

Dive - and - conquer problems generally follow the following paradign :

1 split the problem up into smaller parts
2. Make a recursive calls to problems of size $\quad \frac{d}{n} / b$
3. "Glue" the subproblem together to provide solution of anginal problem.

This formulation lends itself to the coronval recurrence relation :

$$
T(n)=a T(n / b)+O\left(n^{d}\right)
$$

$a t$ branching factor\} $O\left(n^{2}\right)$
b factor by which subproblem sike is reduced
$d \in$ work done at each subproblem.

$$
O\left(n^{d}\right)
$$

$$
\frac{T\left(\frac{n}{b}\right.}{b}=a T(n / b)+\left(\frac{\left(\frac{n}{b}\right)^{d}}{b} \in\right.
$$

How many levels? Until subproblem size $=1$, usually

$$
\begin{aligned}
& \frac{n}{b^{k}}=1 \quad T(1) \\
& n=b^{k} \\
& k=\left\lfloor\log _{b} n\right\rfloor
\end{aligned}
$$

Total work: sum of work at each level:

$$
T(n)=\underline{O\left(n^{d}\right)} \cdot\left(\underline{1}+\left(\frac{a}{b^{d}}\right)+\left(\frac{a}{b^{d}}\right)^{2}+\cdots+\left(\frac{a}{b^{d}}\right)^{\log _{b} n}\right)
$$

Key term: $\left.\frac{a}{b^{d}}\right\}$

MASTER THEOREM

$$
\begin{aligned}
& T(n)=\underline{a} T(n / \underline{b})+O(n \underline{d})\} \\
& \text { - If } \frac{a}{b^{a}}<1\left(\underline{d}>\log _{b} a\right) \text {, then } \underline{T(n)}=\underline{O\left(n^{d}\right)} \\
& \text { (tot heavy) } \\
& \text { - If } \frac{a}{b^{d}}>1\left(d<\log _{b} a\right) \text {, then } T(n)=O\left(n^{\log _{b} a}\right) \\
& \text { (bey heavy) } \\
& \text { - If } \frac{a}{b^{d}}=1\left(d=\log _{b} a\right) \text {, then } T(n)=\frac{0\left(n^{d} \log n\right)}{(\text { taloned })} \\
& T(n)=2 T(n / 2)+O\left(n^{2}\right)
\end{aligned}
$$

(a) (i) $T(n)=3 T(n / 4)+4 n$
(ii) $T(n)=45 T(n / 3)+.1 n^{3}$

$$
\left\lfloor\begin{array}{l}
1 \\
2^{k}
\end{array}\right\rfloor^{n} \quad n \rightarrow n^{1 / 2} \rightarrow n^{1 / 4} \rightarrow 1
$$

(b) $T(n)=2 T(\sqrt{n})+3$, and $T(2)=3$. (cant use Master theorem!) Hint: Try repeatedly expanding the recurrence.

