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CS 170, Spring 2021 DIS 10 A. Chiesa & J. Demmel

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

1 Multiplicative Weights Intro

Multiplicative Weights
This is an online algorithm, in which you take into account the advice of n experts. Every day
you get more information on how good every expert is until the last day T

Let’s first define some terminology:

® _

e z,’ = proportion that you 'trust’ expert ¢ on day ¢

. lgt) = loss you would incur on day i if you invested everything into expert 4

o total regret: Ry = Zthl > xz(-t)lz(t) -

Vi € [1,n] and Vt € [1,T], the multiplicative update is as follows:
wfo) =1

wl@ = wgt_l)(l — e)lgtil)

) _ wz@
N )
D i1 Wy
If e € (0,1/2], and lz(t) € [0,1], we get the following bound on total regret:

RTS€T+M
€

Let’s play around with some of these questions. For this problem, we will be running the randomized
multiplicative weights algorithm with two experts. Consider every subpart of this problem distinct
from the others.

(a) Let’s say we believe the best expert will have cost 20, we run the algorithm for 100 days, and

epsilon is % What is the maximum value that the total loss incurred by the algorithm can be?

(b) What value of € should we choose to minimize the total regret, given that we run the algorithm
for 25 days?

(¢) We run the randomized multiplicative weights algorithm with two experts. In all of the first 140
days, Expert 1 has cost 0 and Expert 2 has cost 1. If we chose ¢ = 0.01, on the 141st day with
1

what probability will we play Expert 1?7 (Hint: You can assume that 0.9970 = 3)

2 Multiplicative Weights

Consider the following simplified map of Berkeley. Due to traffic, the time it takes to traverse a given
path can change each day. Specifically, the length of each edge in the network is a number between
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[0,1] that changes each day. The travel time for a path on a given day is the sum of the edges along

the path.
({2

( )

For T days, both Max and Vinay drive from node 00 to node 22.

To cope with the unpredictability of traffic, Vinay builds a time machine and travels forward in
time to determine the traffic on each edge on every day. Using this information, Vinay picks the path
that has the smallest total travel time over T' days, and uses the same path each day.

Max wants to use the multiplicative weights update algorithm to pick a path each day. In partic-
ular, Max wants to ensure that the difference between his expected total travel time over 7" days and
Vinay’s total travel time is at most 7°/10000. Assume that Max finds out the lengths of all the edges
in the network, even those he did not drive on, at the end of each day.

o/
o
o
()

(a) How many experts should Max use in the multiplicative weights algorithm?

Given the weights maintained by the algorithm, how does Max pick a route on any given day?

)
b) What are the experts?
)
d)

(
(c
(d) The regret bound for multiplicative weights is as follows:

Theorem. Assuming that all losses for the n experts are in the range [0, 4], the worst possible
regret of the multiplicative weights algorithm run for T steps is

Ry <8VTlnn

Use the regret bound to show that expected total travel time of Max is not more than 7°/10000
worse than that of Vinay for large enough T'.

Reduction: Suppose we have an algorithm to solve problem A, how to use it to solve problem
B?
This has been and will continue to be a recurring theme of the class. Examples so far include

e Use SCC to solve 2SAT.

e Use LP to solve max flow.

e Use max flow to solve mincut.

e Use max flow to solve maximum bipartite matching.

In each case, we would transform the instance of problem B we want to solve into an instance
of problem A that we can solve. Importantly, the transformation is efficient, say, in polynomial
time.
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Conceptually, a efficient reduction means that problem B is no harder than A. On the other
hand, if we somehow know that B cannot be solved efficiently, we cannot hope that A can be
solved efficiently.

To show that the reduction works, you need to prove (1) if there is a solution for an instance
of problem A, there must be a solution to the transformed instance of problem B and (2) if there
is a solution to the transformed instance of B, there must be a solution in the corresponding
instance of problem A.

3 Vertex Cover to Set Cover

In the minimum vertex cover problem, we are given an undirected unweighted graph G = (V| E) and
asked to find the smallest set U C V that “covers” the set of edges E. In other words, we want to
find the smallest set U such that for each (u,v) € E, either u or v is in U.

Now recall the definition of the minimum set cover problem: Given a set U of elements and a
collection S1, . . . , S), of subsets of U, the problem asks for the smallest collection of these sets
whose union equals U.

Give an efficient reduction from the minimum vertex cover problem to the minimum set cover
problem.

4 Maximum Spanning Tree

In this class, we have been talking about minimum spanning tree. What about maximum spanning
tree? Can you use the minimum spanning tree algorithms we learned, Prim’s and Kruskal’s, as
blackbox to find maximum spanning tree? Assume the graph is undirected and with positive edge
weights.
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A Meta-Algorithm and Applications
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Abstract: Algorithms in varied fields use the idea of maintaining a distribution over a
certain set and use the multiplicative update rule to iteratively change these weights. Their
analyses are usually very similar and rely on an exponential potential function.

In this survey we present a simple meta-algorithm that unifies many of these disparate
algorithms and derives them as simple instantiations of the meta-algorithm. We feel that
since this meta-algorithm and its analysis are so simple, and its applications so broad, it
should be a standard part of algorithms courses, like “divide and conquer.”
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