

Sl 70
SECTION 11

Reductions NP completeness

Vocab from Lecture I 0 2 3 1 5

we 0

Binaryrelation Pairsof binarystrings X w associatedwith
a certainproperty p
x istheinstance of the problem instance i

w is theexample that witnesses if Instance x has the property
p

decided given instance x decide whether there exists w

such that Lx w is in R ES NO

searched given instance X find instance w such that
Cx w is in R output is a witness

language subsetof binary strings suchthat a witness
exists YES instances of a decision problem

verifier returns whether Lx w is in R in polynomial

time iv r t instance X

recline If problem B can be used as a blackbox

to solve problem A

NI Decision problems that have a polynomial boneverifier

pi Decision problems that can be computed in poly time

xst.e.isTL

00
NPHayd All NP problems reduce to this problem

n A inNP A A
k d

Np lonpleter problems that are in NP inatndarmet
NPP
Hard

subsetfmduerlexf.ir
theutoprovereductions A fYj B
needto show 2 things A E B

e our reduction converts an instanceof problemA
with a solution to an instance of problem B

A B with a solution

TB AD Instance of problem A with no solution

instance of problem B with no solution

If instance B returns sol then it wasgiven

why do we need the two way reduction
enhance A
with sol

need to show that the reduction is valid in all cases

A reduction cannot return new answers that

shouldn't exist

y output is a solution for B then it
must've been given a solution for A
A reduction must find all answers that exist

If given a solution for A then the
reduction must find a solutionfor B

flow to prove a problem is WP complete

Prone NP flard show that there exists

a reduction from another NP complete NP Hand
discussion to this problem
problem

DroneNP show that there exists a poly
lime verifier

no

CS 170, Spring 2021 DIS 11 A. Chiesa & J. Demmel

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

Reduction: Suppose we have an algorithm to solve problem A, how to use it to solve problem
B?

This has been and will continue to be a recurring theme of the class. Examples so far include

Use SCC to solve 2SAT.

Use LP to solve max flow.

Use max flow to solve mincut.

Use max flow to solve maximum bipartite matching.

In each case, we would transform the instance of problem B we want to solve into an instance
of problem A that we can solve. Importantly, the transformation is e�cient, say, in polynomial
time.

Conceptually, a e�cient reduction means that problem B is no harder than A. On the other
hand, if we somehow know that B cannot be solved e�ciently, we cannot hope that A can be
solved e�ciently.

To show that the reduction works, you need to prove (1) if there is a solution for an instance
of problem A, there must be a solution to the transformed instance of problem B and (2) if there
is a solution to the transformed instance of B, there must be a solution in the corresponding
instance of problem A.

If there exists a polynomial reduction from problem A to problem B, problem B is at least as
hard as problem A. From this, we can define complexity class which sort of gauge ’hardness’.
Complexity Definitions

NP: a decision problem in which a potential solution can be verified in polynomial time.

P: a decision problem which can be solved in polynomial time.

NP-Complete: a decision problem in NP which all problems in NP can reduce to.

NP-Hard: any problem which is at least as hard as an NP-Complete problem.

Prove a problem is NP-Complete
To prove a problem is NP-Complete, you must prove the problem is in NP and it is in NP-Hard.
To do this, you must show there exists a polynomial verifier, and reduce an NP-Complete problem
to the problem.

1 NP Basics

Assume A reduces to B in polynomial time. In each part you will be given a fact about one of the
problems. What information can you derive of the other problem given each fact?

1. A is in P.

2. B is in P.

3. A is NP-hard.

1

CS 170, Spring 2021 DIS 11 A. Chiesa & J. Demmel

4. B is NP-hard.

2 SAT and Integer Programming

Consider the 3SAT problem, where the input is a set of clauses and each one is a OR of 3 literals. For
example, (x1 _ x4 _ x7) is a clause which evaluated to true i↵ one of the literals is true. We say that
the input is satifiable if there is an assignment to the variables such that all clauses evaluate to true.
We want to decide whether the input is satifiable.

On the other hand, consider the 0-1 linear programming problem. The setup is exactly the same
as LP, except that the optimization problem is allowed to have 0-1 constraints such as xi 2 {0, 1}.

Show how to use 0-1 linear programming to solve 3SAT.

3 Decision vs. Search vs. Optimization

The following are three formulations of the vertex cover problem:

As a decision problem: Given a graph G, return TRUE if it has a vertex cover of size at most
b, and FALSE otherwise.

As a search problem: Given a graph G, find a vertex cover of size at most b (that is, return the
actual vertices), or report that none exists.

As an optimization problem: Given a graph G, find a minimum vertex cover.

At first glance, it may seem that search should be harder than decision, and that optimization should
be even harder. We will show that if any one can be solved in polynomial time, so can the others.

(a) Suppose you are handed a black box that solves vertex cover (decision) in polynomial time.
Give an algorithm that solves vertex cover (search) in polynomial time.

(b) Similarly, suppose we know how to solve vertex cover (search) in polynomial time. Give an
algorithm that solves vertex cover (optimization) in polynomial time.

4 California Cycle

Prove that the following problem is NP-hard
Input: A directed graph G = (V,E) with each vertex colored blue or gold, i.e., V = Vblue [Vgold

Goal: Find a Californian cycle which is a directed cycle through all vertices in G that alternates
between blue and gold vertices (Hint : Directed Rudrata Cycle)

2

v x n n

3 SAT O E Lp

E t C Stl z t

of 3SATEuery mhsfied.gg wereexist

a

fea.si
ornmahien

