$$
\angle S 170
$$

tinear Brogramming
lInear programming

- What is linear?
- Addition $\binom{\downarrow}{x_{1}+x_{2}}$
- Scalar multiplication $\left(a x_{1}, b x_{2}\right)$
- Oplimization problems have 3 parts:

1. Variables : $x_{1}, x_{2}, \ldots x_{n}$
2. Objective function some function of the variables that were bring to muninize or maximize
3. Constraints: Relationships (usually inequalities) the uarables must satisfy

- Linear programing is a type of optimization problems. with a linear objulve function and linear constraints.

Example
$\max (5 x+3 y)$ objective
such that
non-ngotivity

$$
\left.\begin{array}{l}
5 x-2 y \geq 0 \\
x+y \leq 7 \\
x \leq 5 \\
x \geq 0 \\
y \geq 0
\end{array}\right\} \quad \text { conshinnt }
$$

constrains-
dort forget!

$$
5 x+3 y=?
$$

How to solve?

- Maximin value is always at a vertex! (because of convexity- mill cover later)
- Find all vertices and compare values
- How to see this? Look at level sets Level set - set of paints where value of objective is equal ($3 x+5 y=c$, for some c)

Convexity

- Jor a well-defined linear program, the set of feasible solutions will be convex.

convex

convex

non-Comex
(Formally, if \vec{x} and \vec{y} are feasible solulions of the linear program, then $\forall \lambda \in[0,1]$, so is $\vec{z}=\lambda \vec{x}+(1-\lambda) \vec{y}$.
(inlutuely - anything belowan then)
Because of this, one of three conditions must hold-
(1) no feasible solutions $(x \geq 1, x \leq-3)$
(2) unbounded, with no optimum $\left(\min x_{1}+x_{2}, 0\right.$

$$
\left.x_{1}+x_{2} \geq 0\right)
$$

(3) vertex of convex polytaper

Why vertex?
(2). To any point in the interior, can do better (be more efferent with corshaint)
(2) Io r any point on the edge, euther the edge is optimal, or can move towards a more oplemal direction.
simplex!
Sext week- duality. Very important two ways of looking at linear programs, by flopping the conshaints and variables

Linear algebra LPS
since corshaint and objeclue functions are linear, an write conshaints \& inequalities with vectors and matrices.
εg

$$
\begin{gathered}
\max (5 x+3 y) \\
\text { such that } \quad 5 x-2 y \geq 0 \\
x+y \leq 7 \\
x \leq 5 \\
x \geq 0 \\
y \geq 0 \\
=\quad \max \quad c^{\top} z
\end{gathered}
$$

such that $\vec{A} \vec{z} \geq b$

$$
\dot{z} \geq 0
$$

where $\vec{C}=\left[\begin{array}{l}5 \\ 3\end{array}\right], \quad \vec{z}=\left[\begin{array}{l}x \\ y\end{array}\right], \quad A=\left[\begin{array}{cc}5 & -2 \\ -1 & -1\end{array}\right]$

$$
\vec{b}=\left[\begin{array}{l}
0 \\
7
\end{array}\right]
$$

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets are not designed to be finished in an hour. They are deliberately made long so they can serve as a resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings, and the homework.

1 LP Basics

Linear Program. A linear program is an optimization problem that seeks the optimal assignment for a linear objective over linear constraints. Let $x \in \mathbb{R}^{d}$ be the set of variables and $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$. The canonical form of a linear program is

Any linear program can be written in canonical form.

Let's check this is the case:

(i) What if the objective is maximization? $C \rightarrow-L$
(ii) What if you have a constraint $A x \leq b$? $\quad-\boldsymbol{A} \geq-\boldsymbol{b} \rightarrow \boldsymbol{A} \rightarrow-\boldsymbol{A} \rightarrow-b$
(iii) What about $A x=b$? $\boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b},-\boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}$
(iv) What if the constraint is $x \leq 0$? $\quad z_{1}=-\boldsymbol{x} \quad \boldsymbol{x} \rightarrow-\boldsymbol{z}, \quad z \geq 0$
 maximize $b^{\top} y$ subject to $A^{T} y \leq c$

$$
y \geq 0
$$

Weak duality: The objective value of any feasible dual \leq objective value of any feasible primal
Strong duality: The optimal objective values of these two are equal.
Both are solvable in polynomial time by the Ellipsoid or Interior Point Method.

2 Job Assignment

There are I people available to work J jobs. The value of person i working 1 day at job j is $a_{i j}$ for $i=1, \ldots, I$ and $j=1, \ldots, J$. Each job is completed after the sum of the time of all workers spend on it add up to be 1 day, though partial completion still has value (i.e. person i working c portion of a day on job j is worth $a_{i j} c$. The problem is to find an optimal assignment of jobs for each person for one day such that the total value created by everyone working is optimized. No additional value comes from working on a job after it has been completed.
(a) What variables should we optimize over? I.e. in the canonical linear programming definition, what is x ?
(b) What are the constraints we need to consider? Hint: there are three major types.

$$
x_{i j} \geqslant 0 \quad \forall j \sum_{i} x_{i j} \leq 1
$$

$$
\forall i \quad \sum_{j} x_{i j} \leq 1=
$$

(c) What is the maximization function we are seeking?

3 Linear regression

In this problem, we show that linear programming can handle linear regression. Let $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{d}$ be given, where n, d are not assumed to be constant. However, assume all input numbers have constant bits.
(a) Recall that the ℓ_{1} norm of a vector v is given by $\|v\|_{1}=\sum_{i=1}^{d}\left|v_{i}\right|$. The L1 regression problem asks you to find $x \in \mathbb{R}^{d}$ that minimizes $\|A x-b\|_{1}$.
(i) Provide a linear program that finds the opimtal x, given A, b.
(ii) Argue that it can be solved in polynomial time (in n, d).
(b) Recall that the ℓ_{∞} norm of a vector v is given by $\|v\|_{\infty}=\max _{i}\left|v_{i}\right|$. The L_{∞} regression problem asks you to find $x \in \mathbb{R}^{d}$ that minimizes $\|A x-b\|_{\infty}$.
(i) Provide a linear program that finds the opimtal x, given A, b.
(ii) Argue that it can be solved in polynomial time (in n, d).

4 Provably Optimal

Consider the following linear program:

$$
\begin{aligned}
\max x_{1}-2 x_{3} & \\
x_{1}-x_{2} & \leq 1 \\
2 x_{2}-x_{3} & \leq 1 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

For the linear program above,
(a) First compute the dual of the above linear program
(b) show that the solution $\left(x_{1}, x_{2}, x_{3}\right)=(3 / 2,1 / 2,0)$ is optimal using its dual. You do not have to solve for the optimum of the dual. (Hint: Recall that any feasible solution of the dual is an upper bound on any feasible solution of the primal)

5 Taking a Dual

Consider the following linear program:

$$
\begin{aligned}
& \max 4 x_{1}+7 x_{2} \\
& x_{1}+2 x_{2} \leq 10 \\
& 3 x_{1}+x_{2} \leq 14 \\
& 2 x_{1}+3 x_{2} \leq 11 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Construct the dual of the above linear program.

