CS170 SECTION 9

FLOW, DUALITY, ZSGS

retwork Ilow

Max flow we can puch from 5 to t, given capacity

ord - Julkerson algorithm

max Z

In LP, we try to maximize some nariables, subject to certain constraints (variables can't be too large) In the dual, we pretend to be the constraints! We place an upper bound on the value of the objective using the constraints. (But constraints can't be too strict !)

Neu variables are non coefficients of the constraints!

Wont to choose weffirents so we can get an inequality that contains the objective L so we can bound it) Max P+2B variables are how much <u>x</u> (P < 400) y. (B < 300) me scale each og the nequalities before we $\frac{1}{2} \cdot (2P + 3B \leq 1200)$ add them logether. P,BZO (x)~ 10 $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ x ~ 10 x L 10 (×+22) P+ (4+32) B 4 { 400 x + 300 y + 1200 26 (Pattern match!) K+22 21 y +32 =2 × + 22 21 (nequality is an even better upper bound) coefficient of Pin the primal objective y + 32 = 2 coefficient of B in the

Went to minimple the upper bound!
(constraints want to make punch objective
small)
Min 400
$$\chi + 300 + 1200 \pm$$

sweets $\chi + 22 \ge 1$
 $\chi \pm 32 \ge 2$
 $\chi \pm 20$
 $\chi \pm 2$

7

- -

- 2365 -2 players: - Maximilier, tries to make score more positive - Minimiger, tries to make some more regative - Payoff matrix - grid of options - Mininger - columns $\frac{1}{2} = \frac{1}{2} = \frac{1}{1}$ - Maximilier - rows $\frac{1}{2} = \frac{1}{2} = \frac{1}{1}$ - Each player wonts to choose the optimal probability distribution to get the highest/ lowest some
 - Expected payoff: $\leq 6_{ij}$. Prob [Aow plays i, Column plays j]
 - Assume that the Row player anounces then distro first. Then the column player will choose the option that mininges

expected payoff. Payoff: min $\begin{cases} 3x_1 - 2x_2 - x_1 + x_2 \end{cases}$ $\chi_1 + \chi_2 = 1$ Row player wants to maximize this! $\max_{x_1, x_2} (\min_{x_1, x_2} 3x_1 - 2x_2, -x_1 + x_2 3)$ Very coal fort : Using this some logic for the tolumn player gives you the dual! [Shows there's an optimal nature] 5 Mox 2 $Z \leq 3x_1 - 2x_2$ $2 \leq -x_1 + x_2$ $\chi_1 + \chi_2 = 1 \epsilon$ $x_1, x_2 \ge 0 \epsilon$