$$
\begin{aligned}
& \text { CSI } 70 \\
& \text { SELTION } 9
\end{aligned}
$$

FLOW, DUALITY, ZSGS
network Flow

max flow we can push from $\frac{s \text { to } t}{\text { constrains }}$, given capacity

Ford-Julkerson alyouttrm

1. While there is a path from st in the residual graph, fill that path as much as possible
2. Update residual graph

(send flow along $S \rightarrow A \rightarrow T$ path)

(send flow along $S \rightarrow A \rightarrow B \rightarrow T_{\text {path) }}$

(send flow along $S \rightarrow B \rightarrow T$ path)

No flow can pass from $s \rightarrow t$ anymore in the residual graph!
so we are done!
(Have also found the min-cut!)

Duality
In LP, we thy to maximize some variables, subject to certain constraints (variables cart be too large)
In the dual, we pretend to be the constraint ! We place an upper bound on the value of the olyestive using the constraints. (But conshaints cant be too strict!)

Example:
Hector form:

$$
\begin{aligned}
& \xrightarrow[{\max \sqrt{\frac{P}{2}+2 B}}]{\rightarrow} \max \left[\begin{array}{l}
1 \\
2
\end{array}\right]^{\top}\left[\begin{array}{l}
P \\
B
\end{array}\right] \\
& 2(P \leq 4003)\} \\
& \frac{3<B \leq 300\}}{2 P+3 B \leq 1200}+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
P \\
B
\end{array}\right] \leq\left[\begin{array}{c}
400 \\
300 \\
1200
\end{array}\right] \\
& P+2 B \leq \ldots\left[\begin{array}{l}
P \\
B
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

new variables are now coefficients of the constraints!
want ko choose weffuents so we car get an inequality that corlains the objective L so we can bound it)

$$
\begin{aligned}
& r \frac{\max p+2 B}{x}(p \leq 400) \\
& \underline{y} \cdot(B \leq 300) \\
& z \cdot(2 P+3 B \leq 1200) \\
& p, B \geq 0
\end{aligned}
$$

(x) <10

$$
\begin{aligned}
& x^{\prime} \\
& x^{\prime} \geq x
\end{aligned}
$$

$$
x \geq 0
$$

$$
\left.\begin{array}{l}
x \geq 0 \\
y \geq 0 \\
z \geq 0
\end{array}\right\}
$$

$$
z \geq 0
$$

$$
\left.\left.\begin{array}{rl}
x^{\prime} & <10 \underline{P x} \\
x & \leq 400 x \\
+2 P z+3 B z & \leq 1200 \\
+200 y
\end{array}\right\}\right\}
$$

$$
(x+2 z) E+(y+3 z B \leq\{400 x+300 y+1200 z\}
$$

$x+2 z \geq 1 \quad$ (Pattern match!)
$y+3 z \geq 2$
$x+2 z \geq 1$ (inequality is an even better upper bound)
caffiment of P in the primal objective
$y+3 x \geqslant 2$ coefficient of B in the
want to munurye the upper bound!
(conshaints wart to make pumal objecture small) $\min 400 x+300 y+1200 z$
subject to $x+2 z \geq 1\}$

$$
\left.\begin{array}{c}
x+2 z \geq 1 \\
y+3 z \geq 2 \\
x \geqslant 0 \\
y \geq 0 \\
z \geq 0
\end{array}\right\}
$$

Vector formulation comparison:
Hector form primal Vector form dual

$$
\begin{aligned}
& \max \left[\begin{array}{l}
1 \\
2
\end{array}\right]^{\top}\left[\begin{array}{l}
P \\
\beta
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
P \\
B
\end{array}\right] \leq\left[\begin{array}{l}
400 \\
300 \\
1200
\end{array}\right] \xrightarrow{\min }\left[\begin{array}{l}
400 \\
300 \\
1200
\end{array}\right]^{\top}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} \\
& {\left[\begin{array}{l}
P \\
B
\end{array}\right] \geq\left[\begin{array}{l}
x \\
y \\
q
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 & 3
\end{array}\right] \geq\left[\begin{array}{l}
1 \\
2
\end{array}\right]}
\end{aligned}
$$

25 Gs
-2 players:

- Maximizer, tries to make score more posture
- Minimizer, hies to make save move negative
- Payoff matrix - grid of options
- Mrniniger - columns
- Maximizer - rows
$\left\{\begin{array}{l}\text { 年 } \\ \hline\end{array}\right.$
- Each player wants to choose the optimal probability distribution to get the highest/ lowest scone
- Expected payoff: $\sum_{i, j} G_{i j}$ • Prob $[$ Row plays i, Column plays j]
- Assume that the Raw player announces then distr first. Then the column player will choose the option that mummizes
expected payoff.

$$
x_{1}+x_{2}=1
$$

Row player warns to maximize this!

$$
\max _{x_{1}, x_{2}}\left(\min \left\{3 x_{1}-2 x_{2},-x_{1}+x_{2}\right\}\right)
$$

very wal fact: Using this same logic for the Column player guvs you the dual! [shows theris an optimal value] $\max z$

$$
\begin{aligned}
& z \leq 3 x_{1}-2 x_{2} \\
& z \leq-x_{1}+x_{2} \\
& x_{1}+x_{2}=1 \in \\
& x_{1}, x_{2} \geq 0 \in
\end{aligned}
$$

