5170
SgECTTON 1%

ey ok

&“ﬂ%

-MWWM? ml&.a
Aaligiee

- U lockune W""’MMW

-%UM\I\MNH&“’CMM te

} '
LMV\M\&\M%[M /w}(w) 7 =256
- Noune W L;J’o*,sw n aens
- Wank b Ah/w (PM—U h:,};\
T i&mwdk‘x
- dnbthw X = O P
'%\W}LMNMW M;
1 1

¥ +=1 w/ prebs I/Zx

- b U -1 24D 2| 2
E_AM*—*» 5 z
(e va& — %ncbetwo

b |

100002 04LOO

—

kw0l eopunk Ga zlj,..ng)

WM-MW«P?WM'{@MB

-

Pounusisa ndependank o M ik Uan ummenssl!

womple t b () = ax ek po (for lege p)
%)Q(H\/j?,Q_;uL: . [M*i} —> LM]/W\/’W\Q—
h, (%) ’é?‘ Y x # mrt

CS 170, Spring 2021 DIS 13 A. Chiesa & J. Demmel

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

Philosophy of analyzing randomized algorithms. The first step is to always identify a bad
event. L.e. identify when your randomness makes your algorithm fail. We will review some techniques
from class using the following problem as our “test bed”.

Let G be a bipartite graph with n left vertices, and n right vertices on n? —n + 1 edges.
e Prove that G always has a perfect matching.
e Give a polynomial in n time algorithm to find this perfect matching.
We will analyze the following algorithm BlindMatching;:
e Let 7 and o be independent and uniformly random permutations of [n].
o If {w(1),0(1)},{w(2),0(2)},...,{m(n),o(n)} is a valid matching output it.
e Else output failed.

Union Bound. Suppose X1,..., X, are (not necessarily independent) {0, 1} valued random vari-
ables, then

PriX,+ -+ X,>1<Pr[X, =1 +Pr[Xy =1+ -+ Pr[X, = 1].

Now we analyze our algorithm using union bound. An output M = ({w(1),0(1)},...,{w(n),o(n)})
is a valid perfect matching exactly when all edges of the form {(i),o (i)} are present in G. A “bad
event” happens if any of those pairs are not edges in G.

Let X; be the indicator of the event that {m(i),o(7)} is not present in our graph.

1. What is the probability that X, =17
2. Use the union bound to upper bound the probability that M is not a valid perfect matching.
3. Conclude that G has a valid perfect matching.

The upper bound obtained on the probability of our bad event, i.e. of M not being a valid perfect
matching, is fairly high. In light of this, we introduce the technique of amplification.

Amplification. The philosophy of amplification is that if we have a randomized algorithm that
fails with probability p, we can repeat the algorithm many times and aggregate the output of all
the runs to produce a new output such that the failure probability of the randomized algorithm is
significantly smaller. Now consider the following algorithm SpamBlindMatching.

e Run BlindMatching independently 7' times.
o If at least one of the runs outputted a valid perfect matching, return the output of such a run.

e Else output failed.

1. What is the failure probability of SpamBlindMatching?

2. How large should we set T' if we want a failure probability of §7

Now we switch gears and turn our attention to concentration phenomena and its usefulness in
analyzing randomized algorithms.

CS 170, Spring 2021 DIS 13 A. Chiesa & J. Demmel

Markov’s inequality. Let X be a nonnegative valued random variable, then for every ¢ > 0:

Pr[X > tE[X]] <

S

1. Markov’s inequality is false for random variables that can take on negative values! Give an
example.

2. Give a tight example for Markov’s inequality. In particular, given p and ¢, construct a random
variable X such that ;4 = E[X] and Pr[X > tu] = 1.

Chebyshev’s inequality. Let X be any random variable with well-defined variance!, then

Pr [|X ~E[X]| > t\/Var[X]} < t%

To see the above inequality in action, consider the following problem:

Let B be a bag with n balls, k of which are red and n—k of which are blue. We do not have
knowledge of k and wish to estimate k from ¢ independent samples (with replacement)
drawn from B.

Let X be the number of red balls sampled.
1. What is E[X]?
2. What is Var[X]?

3. Choose a value for £ and give an algorithm that takes in n and X and outputs a number k such
that k € [k — eVk, k + eV/k] with probability at least 1 — 4.
1 4-cycles

We use G(n,p) to denote the distribution of graphs obtained by taking n vertices and for each pair
of vertices i, j placing edge {,j} independently with probability p.

(a) Compute the expected number of edges in G(n,p)?
(b) Compute the expected number of 4-cycles in G(n,p)?

(¢) Give a polynomial time randomized algorithm that takes in n as input and in poly(n)-time outputs
a graph G such that G has no 4-cycles and the expected number of edges in G is Q(n/3).

2 Lower Bounds for Streaming

(a) Consider the following simple ‘sketching’ problem. Preprocess a sequence of bits by,...,b, so

that, given an iﬁgr i, we can return b;. How many bits of memory are required e i
problem ctly?
alr)

o110\t = 0 a = @
- \ g S
'In this course, all rando i 3 well-defined variance @ é b

90,2, %, 8
0, Li),u

v=121

b = ﬂé"\j

CS 170, Spring 2021 DIS 13 A. Chiesa & J. Demmel

(b) Given a stream of integers x1, xa, . . ., the majority element problem is to output the integer which

3

appears most frequently of all of the integerS seen so far. Prove that any algorithm which solves
the majority elemen® problem exactly must use (2(n) bits of memory, where n is the number of
elements seen so far. ——

Streaming Integers

In this problem, we assume we are given an infinite stream of integers 1,22, ..., and have to perform
some computation after each new integer is given. Since we may see many integers, we want to limit
the amount of memory we have to use in total. For all of the parts below, give a brief description of
your algorithm and a brief justification of its correctness.

(a)

Show that using only a single bit of memory, we can compute whether the sum of all integers seen
so far is even or odd.

Show that we can compute whether the sum of all integers seen so far is divisible by some fixed
integer N using O(log N) bits of memory.

Assume N is prime. Give an algorithm to check if N divides the product of all integers seen so
far, using as few bits of memory as possible.

Now let N be an arbitrary integer, and suppose we are given its prime factorization: N =
plfl p§2 ...p¥ . Give an algorithm to check whether N divides the product of all integers seen so
far, using as few bits of memory as possible. Write down the number of bits your algorithm uses
in terms of kq, ..., k.

